Representation Learning for Sparse, High Dimensional Multi-label Classification

نویسندگان

  • Ryan Kiros
  • Axel J. Soto
  • Evangelos E. Milios
  • Vlado Keselj
چکیده

In this article we describe the approach we applied for the JRS 2012 Data Mining Competition. The task of the competition was the multi-labelled classification of biomedical documents. Our method is motivated by recent work in the machine learning and computer vision communities that highlights the usefulness of feature learning for classification tasks. Our approach uses orthogonal matching persuit to learn a dictionary from PCA-transformed features. Binary relevance with logistic regression is applied to the encoded representations, leading to a fifth place performance in the competition. In order to show the suitability of our approach outside the competition task we also report a state-of-theart classification performance on the multi-label ASRS dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

Rice Classification and Quality Detection Based on Sparse Coding Technique

Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...

متن کامل

Exploiting Multi-Label Information for Noise Resilient Feature Selection

In conventional supervised learning paradigm, each data instance is associated with one single class label. Multi-label learning differs in the way that data instances may belong to multiple concepts simultaneously, which naturally appear in a variety of high impact domains, ranging from bioinformatics, information retrieval to multimedia analysis. It targets to leverage the multiple label info...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012